
MetaDiff - a Model Comparison Framework

Mark Kofman and Erik Perjons

Department of Computer and System Sciences
Stockholm University and Royal Institute of Technology

Stockholm, Sweden
{emis-mak,perjons}@dsv.su.se

Abstract. The increasing importance of models in software develop-
ment raises a number of new concerns and challenges. This paper has
concentrated on the issue of model comparison in the context of model
driven development. The goal of the paper is to describe the requirements
for, design, and implementation of a model comparison framework called
MetaDiff. The framework is based on available implementations of Meta
Object Facility (MOF) standard. The authors intend this framework to
be useful to the following experimental research in the area of model man-
agement and when implementing specific model comparison and merge
tools and algorithms.

1 Introduction

There are an increasing research interest and industry support for model driven
approaches such as Model Driven Software Development [6], OMG Model Driven
Architecture [20], Language Driven Development [7]. Number of open source
projects such as Eclipse Generative Model Transformer (GMT) [12], Netbeans
Metadata Repository (MDR) [18], Eclipse Modeling Framework (EMF) [8] and
AndroMDA [3] and different CASE tool vendors work on implementation of dif-
ferent components for model driven development. The approaches are all based
on the idea that modelling is a better foundation for developing and maintain-
ing systems, then code centric development and maintenance [16]. With those
approaches models are not side-effects of development anymore, but a central
part of built software applications. However, the increasing importance of models
raises also the number of concerns and new challenges. One category of problems
is related to proper management of modelling artifacts.

If you take usual code centric development environment then you will find
features like integrated version control, merge and comparison of version dif-
ferences, and other features that make development in teams possible and con-
venient. However, most of those features are oriented to flat text files and are
only suitable for conventional programming language based development. Trans-
ferring those features to model driven development tools is not straightforward
and therefore a number of problems exist which yet have to be addressed by
researchers and practitioners in this field.



According to [15], model comparison is key challenge towards best practices
in model driven development. There are following aspects needed to be addressed
while dealing with this issue:

– In some object oriented languages you split your system logically and phys-
ically into classes. Modelling languages, however, lack this standard way of
physical decomposition. This often results in a huge amount of information
stored in one model unit.

– Models are represented using different notations, often graphical. However,
notation details easily sidetrack from identifying model logical differences.

– Models are not sequential text lines. Instead, models consist of entities that
could be represented either as trees or graphs [15]. Therefore, other tech-
niques for investigating differences must be used.

To deal with those aspects researchers and practitioners need to experiment
extensively. For this reason they need a proper infrastructure solution. This
should enable them to work on the aspect of their interest and see how other
aspects influence or relate to each other. Furthermore, by bringing together input
from different parties, this infrastructure could enable generation of new ideas
and results.

The goal of the paper is to describe the requirements for, design, and im-
plementation of a MOF-based model comparison framework prototype called
MetaDiff. By ”MOF-based” we mean that the models to be compared should all
be based on the OMG’s meta-meta-model standard, called Meta Object Facility
(MOF).

The MetaDiff framework is an extensible comparison solution for modelling
artifacts. Core of the framework is collection of interfaces or so called exten-
sion template. Main requirement for this extension template is to assure that
the framework supports convenient way to add new implementations of match-
ing and comparison algorithms. In addition, the framework should also provide
practical way of working with different meta-models, i.e., different modelling lan-
guages. Main auditory for this framework are tool vendors and researchers in this
field, who could use framework for the development of their specific components.

The framework is using open source Java implementations of MOF standard
(Eclipse EMF [8] and NetBeans MDR [18]). Those implementations are able to
load meta-model of MOF itself and enable user to instantiate it, that is creating
their own meta-models. The implementations also provide a way to generate
Java API to programmatically access meta-model level information.

This paper is organized as follows. In Section 2 we give introduction to con-
cepts, ideas and related research results which are extensively used in this thesis
work. In Section 3 we define requirements for the developed framework. Section
4 is concentrated on design and implementation. Application examples are given
in Section 5. Finally conclusions are presented.



2 Concept and Related Work

2.1 Concepts and Basic Definitions

In this section basic concepts used by this thesis will be described shortly.

Model Driven Development. There are a number of different model driven ap-
proaches emerged during last years. Most well-known of them are Model Driven
Architecture from OMG [20], Model Driven Software Development [6], and Soft-
ware Factories [13]. All Model Driven Development approaches focus on model
as primary artefact in the development process. Model transformations are con-
sidered primary operations on models, used to move information from one model
to another. The idea of the software life cycle is being viewed as a chain of model
transformations.

Models vs Diagrams. In this work similar view to OMG’s Unified Modelling
Language [22] is shared when defining diagrams. Diagram is considered to be a
view or perspective on a full model or part of it. Usually diagrams are represented
in graphical notation.

Meta-Object Facility. The Meta-Object Facility (MOF) [21] technology provides
a model repository that can be used to specify and manipulate models. MOF is
intended to be a a tool for designing and implementing new modelling languages.

Key modelling concepts in MOF are Classifier and Instance or Class and
Object, and the ability to navigate from an instance to its classifier(meta-object).
This key idea is sometimes used to organize modelling world into further levels
of meta-layers. Each higher level meta-layer consists of classifiers for the lower
level. The MOF standard gives the possibility to define as many layers as it is
needed. However most typical is to limit yourself to four meta-layers.

Traditional architecture is based on four meta-layers. Those are :

– M0, which contains the data of the application (for example, the instances
populating an object-oriented system at run time, or rows in relational data-
base tables).

– M1 contains the application: the classes of an object-oriented system, or the
table definitions of a relational database. This is the level at which applica-
tion modelling takes place (the type or model level).

– M2 contains the meta-model that captures the language: for example, UML
elements such as Class, Attribute, and Operation. This is the level at which
tools operate (the meta-model or architectural level).

– M3, which is the meta-meta-model that describes the properties of all meta-
models can exhibit. This is the level at which modelling languages are de-
fined, providing interchange between tools.



2.2 Related Work

This paper focus is on model management. Similar issues as discussed here have
already been addressed in the context of schema and database integration, e.g.,
[14], [23], [1]. Model management requires that operations can be applied on
the models. Microsoft Research [5] has for several years been working on generic
model management. They have developed a set of algebraic operators. Those
operators are:

– Match - takes two models as input and returns a mapping between them. The
mapping identifies relations (mapping) between the objects in the two input
models. The relations are either equal or similar, based on some externally
provided definition of equality or similarity.

– Compose - takes a mapping between models A and B and a mapping between
models B and C, and returns a mapping between models A and C

– Diff - takes a model A and a mapping between A and some model B, and
returns sub-model of A that does not participate in the mapping

– ModelGen - takes a model A and a mapping between A and B, and returns
a new model B based on A and the mapping between A and B

– Merge - takes two models A and B and a mapping between them, and returns
the union, called C, of A and B along with mappings between C and A, and
C and B.

The implementation of operations presented above should be based on differ-
ent algorithms. Several algorithms and solutions have been created for textual
artefacts, but for model artefacts they are few. One such tree difference based
comparison algorithm for MOF-based models [2] is used in this paper prototype
implementation.

In [23] matching related algorithms are described. Distinctions are made
between different schema matching approaches: schema-level and instance-level
matches, element-level and structure-level matches and language-based and constrained-
based matches. The goal of the framework described in this paper is to be able
to manage all these different approaches.

When approaching the model difference problem from developers point of
view it is important to consider layout information of model. Models are often
represented using graphical notation such as UML diagrams. The importance to
address visualization of diagram differences is stressed by [19]. The same paper
suggests using colours as a solution to represent diagram differences. In addition
to semantical differences authors identify modifications to the layout like shifting
classes around in the diagram.

There are some CASE tool vendors that have come out with meta-model
specific model comparison and merge solutions during late time. It is an im-
portant step forward; however it doesn’t mean a complete solution to all model
management problems.



3 Requirements Specification

This section describes the requirements for the MetaDiff framework, in form
of use cases. The use-case model is a model of the system’s intended functions
and actors (roles) performing the functions. The use-case model is used as an
essential input to activities in analysis and design. See Fig. 1 for UML Use Case
diagram.

Fig. 1. MetaDiff Use Case Diagram

3.1 Actor Catalog

Actor catalog describes different actors related to framework, and gives brief
description of actors’ needs from the framework. See Fig. 2 for UML actors
diagram.

The Framework Caller is interested in using basic framework functionality
by calling its methods. Modeled system is a software framework so it does not
provide any user interface. That means that Framework Caller is non-human
actor who is using provided API. It is most likely software component or any
other artefact being able to call framework methods. The Framework Caller
should be able to work independently from specific implementation, e.g. changes
made by Framework Extender should not affect significantly the way Framework
Caller uses the framework.

Framework Extender is an actor who is interested in extending functionality
of the framework and applying it in its own context. It is a human actor that
most likely developing bigger system where model comparison framework could
be used as a component.

The Tool Developer is a Framework Extender, who develops modelling tool
which should provide model comparison functionality. Tool Developer usually
has specific meta-model(s) in his hand. This actor’s main purpose is to extend



Fig. 2. Actors Diagram

framework functionality to make it suitable with modelling tool for later inte-
gration.

The Researcher is another type of Framework Extender. It is also a human
actor whose purpose is to test new research ideas. This actor’s main goal is
to extend the framework for following study of related research problems by
building different prototypes on top of the framework

3.2 Use Case : Match Models

Model matching is a function that takes two models as input and returns a
mapping between those two models as output. Each mapping element of match
result specifies that certain element of one model logically correspond to certain
element of the other model [23].

The use case occurs when Framework Caller decides to find mapping be-
tween two models. First, Framework Caller specifies the algorithm to be used
for model matching. Then he calls the model matching function. Framework ex-
ecutes chosen algorithm and returns resulting mapping. This mapping is likely
to be used by following Use Case : Compare Models described in subsection 3.3.
However, it could also be reasonable for Framework Caller to execute this use
case independently.

Model matching could be a difficult problem in specific cases. In some cases
it concerns semantic interpretation of models created by different human ac-
tors [14]. Therefore in some algorithms it is crucial to provide human/caller
assistance. Framework design should be extensible for this type of matching
algorithms.

3.3 Use Case : Compare Models

The use case enables Framework Caller to compare two models. First Framework
Caller specifies the algorithm to be used for model comparison. Then he calls



the model comparison function. Optionally Framework Caller can also specify
mapping between models, that is going to be used by comparison algorithm.
As a result caller receives differences between two models based on the chosen
algorithm execution. This result will further be referred as comparison delta.

In general case compared models should be instances of the same meta-level.
However, in case of model transformation it could be useful to compare models
that are instances of different meta-models. Framework itself should not have
limitations on this feature. However, comparison algorithms can expose specific
requirements on models and meta-models they accept.

Similar to matching algorithms, some comparison algorithms can rely on
human/caller assistance. Framework design should be extensible for this type of
comparison algorithms.

3.4 Use Case : Implement New Model Matching Algorithm

Framework Extender should be able to implement its own algorithms for model
matching based on available meta-models. Algorithms could be meta-model spe-
cific and require a special type of models as an input. Algorithms can also be
generic, in a sense that they use only MOF layer information.

3.5 Use Case : Implement New Model Comparison Algorithm

Framework Extender should be able to implement its own algorithms for model
comparison. Those algorithms could be based on available meta-models, compar-
ison delta formats and match algorithms if needed. Algorithms could be meta-
model specific and require special type of models as an input. Algorithms can
also be generic, in a sense that they use only MOF layer information.

3.6 Use Case : Implement New Comparison Delta Format

There is no strict way to represent model comparison result. Various compar-
ison delta formats can have an influence on the way model comparison result
is represented. Therefore, Framework Extender should be able to define its own
comparison delta formats if needed.

3.7 Use Case : Load New Meta-Model

New meta-models should be possible to load by Framework Extender. This ac-
tivity is specific to implementation of MOF standard used to load meta-model.
It is important to be aware that definition of new meta-model can not be fully
automated and requires human input in terms of code writing and integrating
this code inside the framework.



3.8 Scenario: Create Model Comparison Tool

Actor Tool Developer could be interested in using MetaDiff framework to support
development of model comparison tool. An example scenario describes activities
the Tool Developer should carry out to succeed. Fig. 3 illustrates activity diagram
for this scenario.

Fig. 3. Create Model Comparison Tool

The process consists of the following steps:

– Evaluate supported implementations of MOF standard. In general case it
is the best choice to use one of already available implementations. But if
none of them suits your purposes it is possible to integrate your own MOF
implementation.

– Evaluate available meta-models. You should make sure that your model re-
source could be handled by framework. It means meta-model you are using
should be loaded previously. You can also define new meta-model using one
of available implementation of MOF standard.

– Evaluate available matching and comparison algorithms. It is likely you can
use available algorithms or reuse parts of them. Otherwise create your own
implementation.

– Now you can use a framework inside your model comparison tool.

4 Design and Implementation

In this section we presents design of the MetaDiff model comparison framework.
As it is shown on Fig. 4, on a higher level MetaDiff framework is split into

three architectural parts:

– Extension Template - Collection of interface to assure different extensions of
framework are possible



Fig. 4. MetaDiff Architecture

– Infrastructure - Integrated implementations of MOF standard and different
meta-model definitions to enable loading of different model resources

– Extensions - Collection of generic and specific extensions distributed with
a MetaDiff framework. Extensions are implemented on top of infrastructure
provided and should implement Extension Template

4.1 Extension Template Design

Main requirement for Extension Template is to assure convenient way to add new
match and comparison algorithm implementations and new comparison delta
formats. Extension Template is implemented using a collection of interfaces and
covers whole functionality presented in use case model. See Fig. 5 for class dia-
gram of extension template.

Fig. 5. Extension Template Class Diagram

4.2 Infrastructure

Current infrastructure is based on two Java implementations of MOF standard.
Those are Eclipse EMF [8] and NetBeans MDR [18]. Both enable users to define



their meta-models and provide reflective API to access model data. Those APIs
are used to implement matching and comparison algorithms. MetaDiff framework
do not provide common model access interface yet. However, it is one of the
future goals.

4.3 Extensions

MetaDiff framework comes with a collection of different extensions. In authors
opinion most important are TucsDiffFinder, DeltaXmlDiffFinder, and IdBasedMap-
pingFinder.

– TucsDiffFinder extends ModelDiffDinfer by implementing diff algorithm
suggested in [2]. Implementation is based on Ecore meta-model.

– DeltaXmlDiffFinder is a comparison implementation based on commercial
DeltaXML XML comparison tool and can compare models stored in XML.

– IdBasedMappingFinder is a ModelMappingFinder extension class. It uses
object ID to make the matching between two models. This type of mapping
is perfectly suitable for comparing different versions of one model.

We find that following extensions could be also beneficial :

– Meta-model specific algorithms, that use information provided in meta-
model to improve efficiency or other quality attribute of the algorithm. Eg.
UML comparison algorithms.

– Different extension of ModelMapingFinder. [23] gives a detailed classification
of possible schema matching algorithms.

– ModelComparisonDelta extension as a set of elements to be added or removed
from the model.

– ModelComparisonDelta extension as a model. Having delta represented as
model can give user a possibility to apply model transformations also on
comparison delta itself. It may require special treatment from comparison
algorithm to make sure that delta is a well-formed model [5].

5 Examples

We have developed two application examples of MetaDiff framework. Complete
source code of both examples is available at [17].

5.1 UML Model Matching Tool

Lets assume we have a task to develop command line model matching tool for
UML 1.4 [22]. Specific of this matching tool is that it should not identify mapping
automatically, but instead ask human to map each model element.

We follow Scenario: Create Model Comparison Tool but keeping in mind that
we need just model matching functionality.



– There is UML 1.4 meta-model based on NetBeans MDR available for our
use.

– We use CallbackMatchingFnder extension to provide human interaction. We
also implement our specific implementation of MappingCallback interface.
For each callback it will ask caller to choose one of elements to match.

– We implement Framework Caller using java class to access MetaDiff func-
tionality.

5.2 Creating Diff Tool for Swallow Models

Lets assume we have a task to develop command line comparison tool for Swallow
models. Swallow is a simple meta-model developed by Eclipse GMT open source
project as an example of Model Driven Software Development [6] approach. This
example is described in details in paper [9]. You can see EMF class diagram of
this meta-model in Fig. 6.

Fig. 6. Swallow Meta-Model

We follow Scenario: Create Model Comparison Tool.

– Swallow meta-model is defined using EMF Ecore and so is supported by
current framework infrastructure,

– Now we load Swallow meta-model. We do it by adding needed jar files into
the classpath,

– We decide to use algorithm implementation based on paper [2] provided with
a framework, so we do not need to implement our own algorithm



– We implement Framework Caller using java class to access MetaDiff func-
tionality. [17]

To test the tool we borrow simple guest book model described in [9]. Based
on Swallow meta-model first version of Guest Book model was defined and then
changes applied to that model. You can see tree representation of both models
in Fig. 7. Following changes were done in the initial guest book model.

– Rename Package guestbook to gb
– Add new attribute to GuestBook Class
– Delete Attribute text from Class GuestEntry

Fig. 7. Guest Book Model Versions

Running created tool has given a result of following diff operations:

– Create new element of type Attribute
– Set the value of feature name of element Attribute from value ”null” to new

value = ”name”
– Set the value of feature name of Attribute with name ”text” from value

”text” to new value ”null”
– Set the value of feature name of Package from value ”guestbook” to new

value ”gb”
– Remove a link from element Class with name ”GuestEntry” to feature with

name ”null”
– Insert a link from feature Attribute of element Class with name ”GuestBook”

to Attribute with name ”name”
– Delete element Attribute with name ”null”



6 Conclusion

6.1 Results Achieved

The central contribution is the development of MetaDiff - an extensible model
comparison framework. The framework provides Extension Template - a collec-
tion of interfaces and guidelines to extend them, Infrastructure, which enables
integration of MOF standard implementations and set of meta-models, and a
set of extensions to serve as a proof of concept for Extension Template.

Benefits of current work are the following :

– Based on MetaDiff framework the following research is simplified by ability
to create prototypes. Experimenting with framework extensions is considered
as important improvement for researchers.

– MetaDiff Extension Template could be extended to provide wider range of
model management functionality and so to deal with more general theoretical
problems.

– Created framework has also a practical value. Developers of Domain Specific
Languages could use this framework to provide model comparison solution
for their domains. Simple example of how to do this has been shown for
Eclipse GMT Swallow meta-model.

6.2 Future Work

We identify different streams of possible future work related to current thesis.

Clarify Extension Template. It is important not to stop on achieved results.
Availability of different framework extension can lead to ideas for Extension
Template improvement. Some generic abstract classes could be added as part of
Extension Template to support development of extensions.

Create New Framework Extensions. Value of the framework will increase with
the number of different extensions.

Here is the list of extensions we believe would be most important to imple-
ment next:

– ModelMappingFinder extensions not based on object identifiers. This would
assure applicability of framework in wider range of situations,

– implementation of comparison algorithms for popular meta-models,
– create a well-structured hierarchy of ModelComparisonDelta extensions. This

will improve applicability of the framework and help to work on visualization
of comparison deltas,

– ModelDiffFinder and ModelMatchFinder extension that able to compare and
match models based on different meta-models.

Include Other Model Management Functionality. If framework finds its users,
then it is important to widen the functionality it provides. The authors believes
framework functionality can move in direction of becoming implementation of
full model management functionality.



Research on Team Development Issues. Here are some team development prob-
lems in context of model driven development, that the authors believe developed
framework can help to address:

– The visualization of comparison deltas. This is important issue to make
model comparison real in industry. Especially, considering graphical notation
of industrial modeling languages. Clear and informative way to illustrate
model differences is important goal. Research ideas could be tested on top
of current framework by building the prototypes

– Work on scalability of the framework will assure model comparison solutions
are feasible in real world large team environments and possible to apply to
large models.

References

1. Alacig, S., Bernstein, P.A.: A Model Theory for Generic Schema Management,
Proc DBPL 2001, Springer Verlag LNCS, 2001

2. Alanen, M. and Porres, I.: Difference and Union of Models. TUCS Turku Centre
for Computer Science, Department of Computer Science, bo Akademi University
(2003)

3. AndroMDA Code Generator Framework. http://www.andromda.org/
4. Bernstein, P.A., Shapiro, L.: Summary of NSF IDM Workshop Breakout Session

NSF IDM Workshop (2003)
5. Bernstein, P.A.: Applying Model Management to Classical Meta Data Problems.

Proceedings of the CIDR Conference (2003)
6. Bettin, J.: Introduction to Model-Driven Software Development. Business Proccess

Trends, MDA Journal, Aprill 2004
7. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodelling - A Foun-

dation for Language Driven Development, Version 0.1. http://www.xactium.com/
8. Eclipse: Eclipse Modeling Framework. http://www.eclipse.org/emf
9. Emde Boas, G. van: Template Programming for Model-Driven Code Generation

OOPSLA/GPCE: Best Practices for Model-Driven Software Development (2004)
10. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Lan-

guage, Second Edition. (1999)
11. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Lan-

guage, Third Edition. pp 79-83 (2003)
12. Eclipse: Generative Model Transformer. http://www.eclipse.org/gmt
13. Greenfield, J. and Short, K.: Software Factories: Assembling Applications with

Patterns, Frameworks, Models & Tools. John Wiley & Sons, (2004)
14. Johannesson, P.: Schema Integration, Schema Translation, and Interoperability

on Federated Information Systems. Doctoral Thesis, Department of Computer &
System Sciences, Stockholm University, pp 1-25 (1993)

15. Lin, Y., Zhang, J., Grey, J.: Model Comparison: A Key Challenge for Transforma-
tion Testing and Version Control in Model Driven Software Development. OOP-
SLA/GPCE: Best Practices for Model-Driven Software Development (2004)

16. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA destilled. Principles of Model-
Driven Architecture, Addisson-Wesley (2004)

17. MetaDiff Model Comparison Framework. http://www.dsv.su.se/ emis-
mak/metadiff/index.html



18. NetBeans : Metadata Repository, http://mdr.netbeans.org/
19. Ohst, D., Welle, M., Kelter, U.: Differences between Versions of UML Diagrams.

European Software Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (2003)

20. OMG : Model Driven Architecture, http://www.omg.org/mda
21. OMG: Meta Object Facility (MOF) 2.0 Core Specification. (2003)
22. OMG: Unified Modeling Language, Version 1.4. (2003)
23. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema mathing.

The VLDB Journal 10: pp 334350 (2001)


